In a nutshell: The secant method

Given a continuous real-valued function *f* of a real variable with two initial approximations of a root x_{-1} and x_0 where $|f(x_{-1})| > |f(x_0)| > 0$, swapping them if $|f(x_0)| > |f(x_{-1})| > 0$. If they are equal, this algorithm will not work, and if one is zero, we have already found a root. This algorithm uses iteration, linear interpolation and solving a trivial linear equation to approximate a root.

Parameters:

- ε_{step} The maximum error in the value of the root cannot exceed this value.
- ε_{abs} The value of the function at the approximation of the root cannot exceed this value.
- *N* The maximum number of iterations.
- 1. Let $k \leftarrow 0$.
- 2. If k > N, we have iterated N times, so stop and return signalling a failure to converge.
- 3. If $|f(x_{k-1})| < |f(x_k)|$, swap these two values.
- 4. The next approximation to the root will be the root of the linear polynomial that interpolates the points $(x_{k-1}, f(x_{k-1}))$ and $(x_k, f(x_k))$.

Let
$$x_{k+1} \leftarrow x_k - f(x_k) \frac{x_{k-1} - x_k}{f(x_{k-1}) - f(x_k)}$$
.

- a. If x_{k+1} is not a finite floating-point number, so return signalling a failure to converge.
- b. If $|x_{k+1} x_k| < \varepsilon_{\text{step}}$ and $|f(x_{k+1})| < \varepsilon_{\text{abs}}$, return x_{k+1} .
- 5. Increment *k* and return to Step 2.

Convergence

If *h* is the error, it can be show that the error decreases according to $O(h^{\phi})$ where $\phi \approx 1.6180$ is the golden ratio (the positive root of $x^2 - x - 1 = 0$). This technique is not guaranteed to converge if there is a root, for the denominator could be arbitrarily small, causing the next approximation to be arbitrarily far from the previous approximation.