In a nutshell: The secant method

Given a continuous real-valued function f of a real variable with two initial approximations of a root x_; and xo where
[f (x_1)| > |f (xo)| > 0, swapping them if |f (Xo)| > |f (x_1)| > O. If they are equal, this algorithm will not work, and if one
is zero, we have already found a root. This algorithm uses iteration, linear interpolation and solving a trivial linear
equation to approximate a root.

Parameters:
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Estep The maximum error in the value of the root cannot exceed this value.
Eabs The value of the function at the approximation of the root cannot exceed this value.
N The maximum number of iterations.

Let k < 0.
If k> N, we have iterated N times, so stop and return signalling a failure to converge.
If | f (x1)| < | f (%), swap these two values.
The next approximation to the root will be the root of the linear polynomial that interpolates the points
(X1, T (Xk-2)) and (X, T (xx)).
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a. If xk1 is not a finite floating-point number, so return signalling a failure to converge.
b, I Xkrs — Xk| < &step @Nd [ (Xk+1)| < Eavs, FETUIN Xia1.
Increment k and return to Step 2.
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Convergence

If h is the error, it can be show that the error decreases according to O(h?) where ¢ = 1.6180 is the golden ratio (the
positive root of x> — x — 1 = 0). This technique is not guaranteed to converge if there is a root, for the denominator
could be arbitrarily small, causing the next approximation to be arbitrarily far from the previous approximation.



